Microwave Assisted Synthesis of Tetrahydrobenzo[b]Pyrans Via One Pot Multicomponent Reaction Using [Et$_3$NH][HSO$_4$] as Ionic Liquid Catalyst

Vishal U. Mane2,4, Satish M. Chavan4, B. R. Choudhari2, Dhananjay V. Mane1,*

1Professor & Regional Director, Yashwantrao Chavan Maharashtra Open University, Nashik (MS), India
2Department of Chemistry, Shri Chhatrapati Shivaji College, Omerga, Dist. Osmanabad (MS), India
3Principal and Head, Dept. of Chemistry, SSVP’s College-Shindkheda, Dhule (MS) India
4Department of Chemistry, RNC Arts, JDB Commerce, NSC Science College, Nashik (MS) India

*CORRESPONDING AUTHOR
Dhananjay V. Mane, Department of Chemistry, RNC Arts, JDB Commerce, NSC Science College, Nashik (MS) India
Email: dvmane11@gmail.com

ARTICLE INFORMATION
Received July 14, 2018
Revised December 11, 2018
Accepted December 16, 2018
Published

ABSTRACT
The utility of Ionic Liquids (ILs) for the environmentally benign synthesis of heterocyclic compounds found important for due to their unique chemical and physical properties viz. low vapor pressure, recyclability, controlled miscibility, high thermal and chemical stability. The synthesis of 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(3, 4-substituted phenyl)-5-oxo-4H-chromene-3-carbonitrile or tetrahydrobenzo[b]pyran derivatives were successfully synthesized via one pot multicomponent cyclocondensation reaction of aromatic aldehydes, dimeredone and malononitrile utilizing triethylamine hydrogen sulphate [Et$_3$NH][HSO$_4$] as ionic liquid catalyst under solvent free and microwave irradiation method. The reaction was carried to study the optimization of reaction conditions. It was observed that the reaction was best finished when 20 mol% of [Et$_3$NH][HSO$_4$] ionic liquid catalyst, solvent free and MWI conditions are utilized. The ionic liquid catalyst was recycled for three cycles. Our method represents highly efficient, cheap reusable catalyst and environmentally benign greener protocol for the synthesis of chromene-3-carbonitrile or tetrahydrobenzo[b]pyran derivatives under solvent-free conditions.

KEYWORDS: Tetrahydrobenzo[b]pyran, ionic liquid [Et$_3$NH][HSO$_4$], microwave irradiation, green protocol

INTRODUCTION
A vast number of chromenes heterocycles with significant pharmaceutical potential have been derived from natural sources. Few of them are currently used in clinical trials or as potent drugs. The dihydropryan type natural product colubulin and the pharmaceutical HA14-1 showed anticancer properties [1], antibacterial rhodomyrtone [2], the gastric antisecretory agent [3] and hyperxanthone E antitumor agent [4]. Cancer cells grow faster, apoptosis inducing agents act on cancer cells to restrict their abnormal growth and cell division. The 4-aryl-4H-chromenes are potent apoptosis (controlled cell death) inducing agents [5]. Cai et al [6] developed anti-cancer drugs using 4-aryl-4H-chromenes. By varying substituents synthetically on the aryl ring, at C-4 they found that 4H-chromene I showed better activity against human lung tumor xenograft (calu-6) [7]. 4-Aryl-4H-chromene with an electron donating group like
dimethylamino at C-7 position showed improved the activity whereas electron withdrawing group at C-7 position retardation in the activity [8]. Kemmitzer et al. prepared some novel apoptosis-inducing 4-aryl-4H-chromenes 3, 4 with fused rings at 7, 8-positions and showed their anticancer activity [9]. Aridoss et al. synthesized 4H-chromene with ester derivatives found efficient to kill multidrug resistance cancer cell CXLO17 and HA14-1 [10]. Tetrahydrobenzopyran derivatives 5-7 showed antibacterial activity [11]. 2-Amino-4H-chromenes showed various applications such as cosmetics, pigments and biodegradable agrochemicals [12]. Fused chromenes such as 2-amino-4H-chromene showed vast range of biological activities such as antimicrobial, antiviral [13, 14] (Fig.1).

\[\text{Fig.1 Some biologically active agents bearing chromene scaffolds}\]

Various synthetic protocols developed recently after considering the importance of organophosphorous compounds. These includes synthesis of a variety of functionalized 4H-chromene derivatives with biological and pharmaceutical interest using novel organocatalyst tris-hydroxymethylaminomethane (THAM) [10], Potassium phthalimide (PPH)[15], 6-CD in water [16], magnesium oxide as a recyclable catalyst [17], solid phase catalyst ZnO [18], Potassium phthalimide-N-oxyl (POPINO) a novel organic catalyst in water [19], supported ionic liquid catalyst (SILC) [20], using heterogeneous catalyst (Ce-V/SiO\(_2\)) [21], in presence of caffeine from aldehyde, dimedone and malononitrile in aqueous ethanol [22], imidazolidium salts (1-carboxymethyl-3-methylimidazolium bromide ([cmmin]Br), 1-carboxymethyl-3-methylimidazolium tetrafluoroborate ([cmmin][BF\(_4\)]) as reusable catalysts [23], potassium phthalimide (POPI) under solvent-free ball milling conditions at ambient temperature[24], \(\text{p}-\text{dodecylbenzenesulfonic acid (DBSA}}\) in water [25], CuFe\(_2\)O\(_4\) magnetic nanoparticles using low power ultrasonic irradiation [26], heterogeneous catalyst [PVPH]HSO\(_4\) [27], salicyldimine-based Schiff's complex of Cu (II) [28].

The utility of Ionic Liquids (ILs) for the environmentally benign synthesis of heterocyclic compounds found important for due to their unique chemical and physical properties. These properties of ILs included low vapor pressure, recyclability, controlled miscibility, high thermal and chemical stability [29]. Thus, ILs are safer alternatives to organic solvents as they are cheap, easy and safer to use that lead clean reactions at short time [30]. The development of a clean synthetic procedure has become crucial in current research due to increasing environmental concerns. There is great demand for the experienced thoughtful changes with more sustainable processes that avoid the extensive use of toxic and hazardous solvents and reagents, tedious reaction conditions, costly and complicated catalytic systems are demanded in recent years [31]. Nowadays, the efficiency of a chemical synthesis could be measured not only by parameters like overall yield and selectivity but also by human resources, raw material, toxicity, time and energy requirements, use of hazardous chemicals and experimental procedures involved in synthesis [32, 33]. Therefore, the main task of current research is the replacement of less efficient and traditional protocols with more acceptable methods with improved, stable and recoverable catalysts. MW irradiation method for organic synthesis is highly efficient due to short reaction times, uniform heating, cleaner reactions, easier work up, pure and higher yields of desired products [34].
However, Bronsted acidic ionic liquid (ABILs), Triethylamine hydrogen sulphate \([\text{Et}_3\text{NH}][\text{HSO}_4]\) in MW irradiation has not been explored yet for the synthesis of 2-amino-4H-chromenes. The ionic liquid catalyst \([\text{Et}_3\text{NH}][\text{HSO}_4]\) could be prepared using literature method from triethylamine and sulfuric acid [35].

Bronsted acidic ionic liquid (ABIL) simultaneously possess the proton acidity and the characteristic properties of an ionic liquid [36-42]. Mane et al synthesized 2-arylbenzothiazoles using tetra-n-butyl ammonium fluoride (TBAF) catalyst in aqueous media [43]. Recently Subhedar et al synthesized \(\alpha \)-amino-phosphonates and 5-arylidene-rhodanine derivatives by employing \([\text{Et}_3\text{NH}][\text{HSO}_4]\) as catalyst [44].

MATERIALS AND METHODS

All chemical and reagents were purchased from SD Fine, Merck and used without further purification. Melting points were determined in open capillaries using an Electro thermal Mk3 apparatus. Infrared (IR) spectra were recorded on a Perkin-Elmer spectrum 65 FT-IR spectrometer. \(^1\)H NMR spectra were recorded on Bruker Avance FT-NMR spectrometer at 400 MHz frequency in CDCl\(_3\) or DMSO-\(d_6\) using TMS as internal standard. Chemical shift values were recorded in \(\delta \) (ppm) and multiplicities are expressed as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet). The reactions were performed in (CATA-4R-Model No. QW-99, India make) microwave oven at 2450 MHz frequency with power output of 140-700 W. The progress of reaction was monitored by TLC (Thin Layer Chromatography) on silica gel 60 F\(_{254}\) (Merck) plates using UV light (254 and 366 nm) for detection.

Synthesis of 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4(4-nitrophenyl)-5-oxo-4H-chromene-3-carbonitrile (14)

A mixture of malonitrile (0.066g, 1mmol), 4-nitrobenzaldehyde (0.15g, 1mmol), dimedone (0.14g, 1mmol), and \([\text{Et}_3\text{NH}][\text{HSO}_4]\) (0.05g, 20 mole %), was added in a caped 10mL microwave vessel. Then reaction mixture was subjected to MWI at power of 140W for 1-5 min (Table 2). TLC (Thin Layer Chromatography) was used for monitoring the progress of reaction (TLC check; ethyl acetate: hexane 4:1). After complete reaction, the reaction mass was cooled and poured in 10 ml ice-cold water. The product obtained was filtered, washed, dried and recrystallized from ethanol afforded 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-4H-chromene-3-carbonitrile. 2 in 92% yield. The structural data and m. p. of formed product was found identical with spectral data authentic sample [16].

Yield: 0.304 g, 94%; Melting point: 150-152 °C; IR (KBr) cm\(^{-1}\): 3476 and 3229 (NH\(_2\)), 3117 (C-H), 2196 (CN), 1690 (C=O), 1650(C=C), 1594, 1516, 1492, 1352; \(^1\)H NMR 400 MHz (DMSO-\(d_6\)): \(\delta \) ppm 8.12 (d, 2H, Ar-H), 7.72 (d, 2H, Ar-H), 6.94 (s, 2H, NH\(_2\)), 2.19-2.50 (m, 4H, 2CH\(_3\)), 1.09 (s, 3H, CH\(_3\)), 0.96 (s, 3H, CH\(_3\)). Same procedure was used for the synthesis of compounds 1, 3-11, 13-16.

2-amino-5, 6, 7, 8-tetrahydro-4-(4-hydroxy-3-methoxyphenyl)-7-dimethyl-5-oxo-4H-chromene-3-carbonitrile (Table 3, entry 12)

Yield: 0.287 g, 86%; Melting point: 228-230°C; IR (KBr) cm\(^{-1}\): 3474 and 3223 (NH\(_2\)), 3118 (C-H), 2195 (CN), 1695 (C=O), 1651(C=C); \(^1\)H NMR 400 MHz (DMSO-\(d_6\)): \(\delta \) ppm 8.64 (s, 1H, OH), 6.6 (m, 4H, ArH, NH), 6.5 (s, 1H, OH), 6.5 (s, 1H, NH), 3.73 (s, 3H, OCH\(_3\)), 2.0-2.5 (m, 4H, 2CH\(_2\)), 1.09 (s, 3H, CH\(_3\)), 0.98 (s, 3H, CH\(_3\)).

RESULTS AND DISCUSSION

Keeping in mind the pharmaceutical and biological importance of 2-amino-4H-chromene derivatives and utility of ionic liquids towards organic synthesis, we described simple, mild and efficient method for the preparation of tetrahydrobenzo[b]pyrans from aromatic aldehydes, dimedone and malonitrile using \([\text{Et}_3\text{NH}][\text{HSO}_4]\) as a liquid ionic catalyst under microwave irradiation (MWI) method. (Scheme 1).

![Scheme 1: Standard model reaction](image)
The model reaction of 4-nitrobenzaldehyde 12, dimedone 9 and malononitrile 10 afforded 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(4-nitrophenoxy)-5-oxo-4H-chromene-3-carbonitrile 14 in 94% yield via one pot multicomponent MW method. (Scheme 2, Table 3, Entry 2).

![Scheme 2: Synthesis of 2-amino-5, 6, 7, 8-tetrahydro-7, 7-dimethyl-4-(4-nitrophenoxy)-5-oxo-4H-chromene-3-carbonitrile (14)]

The structure of compound 14 was confirmed on the basis of spectral and analytical data. IR stretching frequencies observed at 3476, 3229 for NH$_2$, 3117 (C-H), 2196 (CN), 1690 (C=O), 1650(C=C). 1H NMR of compound showed singlets at 0.96 and 1.09 for -CH$_3$, multiplet at 2.19 -2.50 for two methane protons (CH$_3$), singlet at 6.94 for two protons of NH$_2$ group and doublets at 7.42 and 8.12 ppm for four aromatic protons. Spectral data found similar with literature data [16]. Similarly the reaction of 4-hydroxy-3-methoxybenzaldehyde, dimedone 9 and malononitrile 10 furnished 2-amino-5, 6, 7, 8-tetrahydro-4-(4-hydroxy-3-methoxyphenyl)-7, 7-dimethyl-5-oxo-4H-chromene-3-carbonitrile in 86 % yield (Table 3, Entry 12). Spectral data of the found 2-amino-5, 6, 7, 8-tetrahydro-4-(4-hydroxy-3-methoxyphenyl)-7, 7-dimethyl-5-oxo-4H-chromene-3-carbonitrile similar with literature data [24].

Preliminary investigations showed that reaction best finished when 20 mol% [Et$_3$NH][HSO$_4$] catalyst was used under MWI. The model reaction was tried with 5, 10, 15, 20 and 25 mol% of catalyst and it was found that 20 mol% of catalyst sufficient afford product in good yield (Table 1). It was also observed that no significant increase in the product yield was observed if the amount of catalyst was increased. Thus, 20 mol% of catalyst was chosen as optimum amount for the reactions. The model reaction was performed in various solvents to optimize the solvent model reaction. It was observed the excellent yield of products formed under solvent-free condition (Table 2).

Table 1: Optimization of catalyst amount

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (%)</th>
<th>Time</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30 min</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20 min</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>10 min</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>5 min</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>5 min</td>
<td>92</td>
</tr>
</tbody>
</table>

反应条件：醛基（1mmol），二苯酮（1mmol），丁二烯和20 mol% [Et$_3$NH][HSO$_4$]在MWI下140W。 explode yield.

Table 2: Optimization of solvent

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Time</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>40 min</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Acetonitrile</td>
<td>40 min</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Water</td>
<td>40 min</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Methanol</td>
<td>20 min</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>Ethanol</td>
<td>15 min</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>Solvent free</td>
<td>5 min</td>
<td>92</td>
</tr>
</tbody>
</table>

反应条件：醛基（1mmol），二苯酮（1mmol），丁二烯和20 mol% [Et$_3$NH][HSO$_4$]在MWI下140W。 explode yield.
Table 3: One-pot synthesis of chromene-3-carbonitriles catalysed by \([\text{Et}_3\text{NH}]\text{[HSO}_4\text{]}\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde</th>
<th>product</th>
<th>Time (min)</th>
<th>Yield%</th>
<th>Melting Point(^\circ\text{C})</th>
<th>Found</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>![Product 1]</td>
<td>5</td>
<td>88</td>
<td>226-228</td>
<td></td>
<td>230-235 [16]</td>
</tr>
<tr>
<td>2</td>
<td>![Aldehyde 2]</td>
<td>![Product 2]</td>
<td>5</td>
<td>94</td>
<td>150-152</td>
<td></td>
<td>150-153 [16]</td>
</tr>
<tr>
<td>3</td>
<td>![Aldehyde 3]</td>
<td>![Product 3]</td>
<td>5</td>
<td>93</td>
<td>208-210</td>
<td></td>
<td>206-208 [16]</td>
</tr>
<tr>
<td>8</td>
<td>![Aldehyde 8]</td>
<td>![Product 8]</td>
<td>5</td>
<td>93</td>
<td>236-238</td>
<td></td>
<td>235-237 [16]</td>
</tr>
</tbody>
</table>
In present protocol, we have explored the efficiency and the scope after optimization of the reaction conditions. Aromatic aldehydes were successfully reacted to produce the corresponding chromene-3-carbonitrile derivatives (Table 3, Entry 1-16) in excellent yields (86-94%) in short period. The presented method was successfully used for aryl aldehydes with various electron donating groups hydroxyl (OH), methoxy (-OCH$_3$) methyl (-CH$_3$) and electron withdrawing groups like halides (-F, -Cl, -Br), nitro (-NO$_2$) at different positions on aromatic ring. The reaction was studied for the reusability of [Et$_3$NH][HSO$_4$] catalyst as afforded the corresponding products shown Table 4. The filtrate was evaporated to recover ionic liquid (IL) as viscous liquid on cooling. The IL was reused for thrice consecutively without losing catalytic activity.

Table 4: Recycling of the IL in the synthesis of chromene-3-carbonitriles

<table>
<thead>
<tr>
<th>Entry</th>
<th>Run</th>
<th>Time (min)</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>5</td>
<td>90</td>
</tr>
</tbody>
</table>

aReaction conditions: Aldehyde (1 mmol), dimedone (1 mmol), malononitrile and 20 mol% [Et$_3$NH][HSO$_4$] in MW at 140W. bIsolated yield.
CONCLUSION
Facile, economic, efficient and environmentally benign, green protocol was successfully used for preparation of chromene-3-carbonitrile derivatives via one pot multicomponent cyclocondensation of aromatic aldehyde, dimedone, malononitrile under solvent free ionic liquid and MWI method. The advantages of present method is short reaction time, easy work up that facilitated 86-94 % yield of pure product and use of inexpensive chemicals and reusable ionic liquid catalyst.

ACKNOWLEDGMENT
The authors are thankful to the U.G.C., New Delhi for the award of JRF.; Principal, Shri Chhatrapati Shivaji College, Omega and Principal R.N.C. Arts, J.D.B. Commerce & N.S.C. College, Nashik-Road, Nashik for providing support and necessary facilities required for research.

CONFLICT OF INTEREST
The authors declare no conflict of interest in this research article.

REFERENCES

43. Mane VU, Choudhari BR, Mane DV. Tetra-n-butyl ammonium fluoride (TBAF) catalyzed convenient synthesis of 2-arylbenzothiazole in aqueous media. Chem Biol Interface 2017; (7) 1: 48-56.

Cite this article as: